Average Physical Parameters in an Air-Water Two-Phase Flow in a Small, Square-Sectioned Channel

Author:

Keska J. K.1,Fernando R. D.1

Affiliation:

1. J. Keska Consultants, P.O. Box 573, Richland, WA 99352

Abstract

This experimental study focuses on an adiabatic two-phase air-water flow generated in a small, horizontal, 6.35 mm square channel. Pressure and temperature were near standard conditions. Experimental data and correlations available in the literature, generally, do not consider the full range of concentration, small cross-sectional areas and direct physical parameters, such as concentration (void fraction) and/or phase velocities. Based on the direct measurement of in-situ spatial concentration (in a full range of concentrations, including gas and liquid phases only), and flow-pattern determination, the experimental data from the study are compared with data from the literature and with prediction by the generally accepted Lockhart-Martinelli’s and Chen’s models. Spatial concentration measurements were made with a computer-based system developed and built by the authors. Pressure drop over a length of the channel was also measured with pressure transducers. These measurements were made for a variety of flow conditions which encompassed bubble, slug, plug, and annular flow regimes. Flow patterns were established, and both mean and fluctuating components of the concentration measurements were used to objectively identify the flow patterns. These results, together with visual enhanced observation (stroboscope) supplemented with a high-speed CCD camera recording enhanced with dye injection, were used to obtain flow-pattern maps and compared with the literature. Spatial concentration is shown to be a key physical parameter in describing the state of the mixture in two-phase flow.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3