The Gas Penetration Through Viscoelastic Fluids With Shear-Thinning Viscosity in a Tube

Author:

Yamamoto Takehiro1,Suga Takanori2,Nakamura Kiyoji1,Mori Noriyasu1

Affiliation:

1. Department of Mechanophysics Engineering, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 Japan

2. Department of Mechanical, Materials and Manufacturing Science, Faculty of Engineering, Osaka University 2-1, Yamadaoka, Suita, Osaka 565-0871 Japan

Abstract

The penetration of a long gas bubble through a viscoelastic fluid in a tube was studied. Experiments were carried out for two Newtonian and five polymeric solutions to investigate the relation between the coating film thickness and rheological properties of the test fluids. The polymeric solutions are viscoelastic fluids having shear-thinning viscosity. A bubble of air was injected into a tube filled with a test fluid to form hydrodynamic coating on a tube wall. The film thickness was evaluated by hydrodynamic fractional coverage m. The fractional coverage was characterized using the capillary number Ca and the Weissenberg number Wi. For viscoelastic fluids, Ca and Wi were evaluated considering the shear-thinning viscosity. Two kinds of representative shear rate were used for the evaluation of Ca and Wi. The dependence of m on Ca in viscoelastic fluids was different from that of the Newtonian case. The film was thinner than that of the Newtonian case at the same Ca when Wi was small, i.e. the viscous property was dominant. The shear-thinning viscosity had a role to make the film thin. On the other hand, the film tended to be thicker than the corresponding Newtonian results at large Wi because of normal stress effect.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3