Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium

Author:

Ding Hongtao1,Shin Yung C.2

Affiliation:

1. Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242

2. Fellow ASME School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail: shin@purdue.edu

Abstract

Recently, orthogonal cutting has been exploited as a means for producing ultrafine grained (UFG) and nanocrystalline microstructures for various metal materials, such as aluminum alloys, copper, stainless steel, titanium and nickel-based super alloys, etc. However, no predictive, analytical or numerical work has ever been presented to quantitatively predict the change of grain sizes during plane-strain orthogonal cutting. In this paper, a dislocation density-based material plasticity model is adapted for modeling the grain size refinement mechanism during orthogonal cutting by means of a finite element based numerical framework. A coupled Eulerian–Lagrangian (CEL) finite element model embedded with the dislocation density subroutine is developed to model the severe plastic deformation and grain refinement during a steady-state cutting process. The orthogonal cutting tests of a commercially pure titanium (CP Ti) material are simulated in order to assess the validity of the numerical solution through comparison with experiments. The dislocation density-based material plasticity model is calibrated to reproduce the observed material constitutive mechanical behavior of CP Ti under various strains, strain rates, and temperatures in the cutting process. It is shown that the developed model captures the essential features of the material mechanical behavior and predicts a grain size of 100–160 nm in the chips of CP Ti at a cutting speed of 10 mm/s.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3