Efficient Heat Transfer Approximation for the Chip-on-Substrate Problem

Author:

Fisher Timothy S.1,Zell F. A.2,Sikka Kamal K.1,Torrance Kenneth E.1

Affiliation:

1. Sibley School of Mechanical and Aerospace Engineering, Upson Hall, Cornell University, Ithaca, NY 14853

2. The Carborundum Company Microelectronics Division, 10409 South 50th Place, Phoenix, AZ 85044

Abstract

An analytically based approximate solution is presented for the thermal resistance of an axisymmetric heat source mounted on a conductive substrate with bottom- and top-side convective cooling of the substrate. The approximation closely matches an exact solution for bottom-side convective cooling and reference finite element solutions for top-side and both-side cooling over broad ranges of substrate thickness (10−4 ≤ t* ≤ 104 and 10−2 ≤ t* ≤ 102), substrate outer radius (1 ≤ b* ≤ 100) and convective Blot numbers (10-4 to 102). With bottom-side cooling, a minimum in the thermal resistance can occur over a wide range of substrate thicknesses. The approximate solution possesses simplicity and ease of computation as compared to exact or computational solutions for many microelectronic applications.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference23 articles.

1. Abramowitz, M., and Stegun, I. A., 1972, Handbook of Mathematical Functions, New York, Dover Publications.

2. David R. F. , 1977, “Computerized Thermal Analysis of Hybrid Circuits,” IEEE Transactions on Parts, Hybrids, and Packaging, Vol. 13, pp. 283–290.

3. Eades, H. H., and Nelson, D. J., 1991, “Thermal Interaction of High-Density Heat Sources on Ceramic Substrates,” Proceedings of the Third ASME-JSME Thermal Engineering Joint Conference, J. R. Lloyd, and Y. Kurosaki (eds.), Reno, NV, March 17–22, Vol. 2, pp. 349–356.

4. Ellison G. N. , 1976, “Theoretical Calculation of the Thermal Resistance of a Conducting and Convecting Surface,” IEEE Transactions on Parts, Hybrids, and Packaging, Vol. PHP-12, No. 3, pp. 265–266.

5. Fisher, T. S., Sikka, K. K., Torrance, K. E., and Zell, F. A., 1994, “Efficient Analytical Approximations to the Heat Source-on-Substrate Problem with Convection,” Report No. E-94-06, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY. pp. 1–28.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimising integrated heat spreaders with distributed heat transfer coefficients: A case study for CPU cooling;Case Studies in Thermal Engineering;2022-10

2. Analytical Solution for a Chip Temperature Distribution in a Multilayer Chip-Package with Thermal Warpage;2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2021-06-01

3. Artificial Neural Networks for Package Thermal Analysis;2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2021-06-01

4. Thermal spreading analysis of a transversely isotropic heat spreader;International Journal of Thermal Sciences;2017-08

5. Thermal Spreading Analysis of Rectangular Heat Spreader;Journal of Heat Transfer;2014-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3