High Strain Rate Tensile Behavior of Aluminum Alloy 7075 T651 and IS 2062 Mild Steel

Author:

Pothnis Jayaram R.1,Perla Yernamma1,Arya H.1,Naik N. K.1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

Abstract

Investigations on the effect of strain rate on tensile properties of two materials, namely, aluminum alloy 7075 T651 and IS 2062 mild steel, are presented. Experimental studies were carried out on tensile split Hopkinson pressure bar (SHPB) apparatus in the strain rate range of 54–164/s. Uncertainty analysis for the experimental results is presented. Johnson–Cook material constitutive model was applied to predict the tensile yield strength of the tested materials at different strain rates. It is observed that the tensile yield strength is enhanced compared with that at quasi-static loading. During tensile SHPB testing of the specimens, it was observed that the peak force obtained from the strain gauge mounted on the transmitter bar is lower than the peak force obtained from the strain gauge mounted on the incident bar. An explanation to this is provided based on the increase in dislocation density and necking in the tested specimens during high strain rate loading and the consequent stress wave attenuation as it propagates within the specimen. The fracture behavior and effect of high strain rate testing on microstructure changes are examined. The peak force obtained based on strain gauge mounted on the transmitter bar is lower than the peak force obtained based on strain gauge mounted on the incident bar. There is an increase in tensile yield strength at high strain rate loading compared with that at quasi-static loading for both materials. The enhancement is more for IS 2062 mild steel than that for aluminum alloy 7075 T651. In the range of parameters considered, the strength enhancement factor was up to 1.3 for aluminum alloy 7075 T651 and it was up to 1.8 for IS 2062 mild steel. Generally, there was a good match between the experimental values and the Johnson–Cook model predictions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading;Kolsky;Proc. Phys. Soc. London, Sect. B

2. Elastic Waves

3. Mechanical Testing and Evaluation;Kuhn

4. Hopkinson Bar Experimental Technique, A Critical Review;Gama;Appl. Mech. Rev.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3