Affiliation:
1. Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095
Abstract
Nanofluids, i.e., liquids containing nanometer sized metallic or nonmetallic solid particles, show an increase in thermal conductivity compared to that of the pure liquid. In this paper, a simple model for predicting thermal conductivity of nanofluids based on Brownian motion of nanoparticles in the liquid is developed. A general expression for the effective thermal conductivity of a colloidal suspension is derived by using ensemble averaging under the assumption of small departures from equilibrium and the presence of pairwise additive interaction potential between the nanoparticles. The resulting expression for thermal conductivity enhancement is applied to the nanofluids with a polar base fluid, such as water or ethylene glycol, by assuming an effective double layer repulsive potential between pairs of nanoparticles. It is shown that the model predicts a particle size and temperature dependent thermal conductivity enhancement. The results of the calculation are compared with the experimental data for various nanofluids containing metallic and nonmetallic nanoparticles.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献