Numerical Simulation of Inviscid Transonic Flow Through Nozzles With Fluctuating Back Pressure

Author:

Bo¨lcs A.1,Fransson T. H.1,Platzer M. F.2

Affiliation:

1. Swiss Federal Institute of Technology, Lausanne, Switzerland

2. Naval Postgraduate School, Monterey, CA 93940

Abstract

The study presents a numerical method, based on the flux vector splitting approach, to the problem of unsteady one-dimensional and two-dimensional inviscid transonic flows, with emphasis on the numerical determination of the shock position, through nozzles with time-varying back pressure. The model is first validated by comparison with exact (one dimension) and numerical (two dimensions) steady-state solutions. It is thereafter applied to the problem of time-fluctuating back pressure in quasi-one-dimensional and two-dimensional nozzles. The one-dimensional results are validated by comparison with a small perturbation analytical unsteady solution, whereafter a few sample cases are presented with the objective of understanding fundamental aspects of unsteady transonic flows. It is concluded that both the amplitude and frequency of the imposed fluctuating exit pressure are important parameters for the location of the unsteady shock. It is also shown that the average unsteady shock position is not necessarily identical with the steady-state position, and that the unsteady shock may, under certain circumstances, propagate upstream into the subsonic flow domain. The pressure jump over the shock, as well as the unsteady post-shock pressure, is different for identical shock positions during the cycle of fluctuation, which implies that an unsteady shock movement, imposed by oscillating back pressure, may introduce a significant unsteady lift and moment. This may be of importance for flutter predictions. It is also noted that, although the sonic velocity is obtained in the throat of steady-state, quasi-one-dimensional flow, this is not necessarily true for the unsteady solution. During part of the period with fluctuating back pressure, the flow velocity may be subsonic at the throat and still reach a supersonic value later in the nozzle. This phenomenon depends on the frequency and amplitude of the imposed fluctuation, as well as on the nozzle geometry.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3