Feasibility Analysis of Energy Storage Technologies in Power Systems for Arid Region

Author:

Sreekanth K. J.1,Al Foraih R.2,Al-Mulla A.2,Abdulrahman B.2

Affiliation:

1. Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait City 13109, Kuwait e-mail:

2. Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait City 13109, Kuwait

Abstract

The benefits of energy storage technologies (ESTs) as a step of managing the future energy demand, by considering the case of electric power systems (EPS) in arid regions, were the focus of this study. The evaluation of different forms of ESTs' integration into the existing EPS, especially those with higher potential for solving issues related to the optimization of the power supply and high demands at peak loads, was carried out. Two interactive programs—ESCT and ES-Select—were utilized in the feasibility study that allowed evaluating various ESTs with regard to their characteristics, costs, benefits, which was carried out for the first time in this region. The study analyzed a variety of power ranges within the power system components including bulk generation, transmission, distribution, commercial and industrial, and residential users. These programs were used to address the price and cost components assuming a normal distribution, as well as the cycle life, size, efficiency, cash flow, payback, benefits range, and market potential of 19 important ESTs about the arid region. The obtained data were all combined to verify the appropriateness of these ESTs, which has been followed by determining the optimal use and best probable physical placement of these ESTs within the EPS, by allowing for the economic, environmental, and technical feasibility. The study showed that the compressed air energy storage (CAES) is the most promising option followed by pumped hydro storage (PHS) and sodium-sulfur battery (NaS), based on the technical and economic evaluations of the different ESTs in arid regions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference45 articles.

1. Koeppel, G., 2007, “Reliability Consideration of Future Energy Systems: Multi-Carrier System and the Effect of Energy Storage,” Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland.https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/123495/eth-29505-02.pdf?sequence=2&isAllowed=y

2. Energy Storage for the Electricity Grid: Benefits and Markets Potential Assessment Guide. A Study for the U.S. DOE Energy Storage Systems Program,2010

3. Life Cycle Energy Requirements and Greenhouse Gas Emissions From Large-Scale Energy Storage Systems;Energy Convers. Manage.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3