Analytical Non-Newtonian Oldroyd-B Transient Model for Pretransient Turbulent Flow in Smooth Circular Lines

Author:

Hullender David A.1

Affiliation:

1. Professor Mechanical Engineering, The University of Texas at Arlington, Box 19023, Arlington, TX 76019 e-mail:

Abstract

A new approach for obtaining a normalized closed-form frequency domain analytical model for the non-Newtonian shear thinning effects on the pressure and shear stress transients in a pretransient turbulent flow of fluids in smooth circular lines is formulated. The Oldroyd-B model is utilized to analyze these shear thinning effects on these transients. The process of converting the analytical frequency domain model to the time domain using an inverse frequency algorithm commonly used in system identification is explained and demonstrated. The boundary conditions at the ends of the line are defined by the flow and pressure variables, which are in general functions of time or defined by causality relationships. Corresponding equations for the transient changes in the velocity profile and shear stress are also formulated. Two examples demonstrating the application versatility of the model and the sensitivity of the transients to the shear thinning parameters are included. For these specific examples, the sensitivity of the pressure and velocity transients is observed to be relatively low compared to the sensitivity of the wall shear stress. Insight into when the non-Newtonian complexities associated with shear thinning need to be included in a model for fluid transients considering the mode frequencies and/or the input frequencies is provided. The analytical model can easily be simplified for laminar flow and Newtonian fluids.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3