Wall Temperature Measurements in a Full-Scale Gas Turbine Combustor Test Rig With Fiber Coupled Phosphor Thermometry

Author:

Nau Patrick1,Görs Simon2,Arndt Christoph1,Witzel Benjamin3,Endres Torsten2

Affiliation:

1. Institute of Combustion Technology, German Aerospace Center (DLR), 70569 Stuttgart, Germany

2. Institute for Combustion and Gas Dynamics – Reactive Fluids (IVG), University of Duisburg-Essen, 47057 Duisburg, Germany

3. Siemens AG, Energy Sector, 45473 Mülheim ADR, Germany

Abstract

Abstract Wall temperature measurements with fiber coupled online phosphor thermometry were, for the first time, successfully performed in a full-scale H-class Siemens gas turbine combustor. Online wall temperatures were obtained during high-pressure combustion tests up to 8 bar at the Siemens Clean Energy Center (CEC) test facility. Since optical access to the combustion chamber with fibers being able to provide high laser energies is extremely challenging, we developed a custom-built measurement system consisting of a water-cooled fiber optic probe and a mobile measurement container. A suitable combination of chemical binder and thermographic phosphor was identified for temperatures up to 1800 K on combustor walls coated with a thermal barrier coating (TBC). To our knowledge, these are the first measurements reported with fiber coupled online phosphor thermometry in a full-scale high-pressure gas turbine combustor. Details of the setup and the measurement procedures will be presented. The measured signals were influenced by strong background emissions probably from CO*2 chemiluminescence. Strategies for correcting background emissions and data evaluation procedures are discussed. The presented measurement technique enables the detailed study of combustor wall temperatures and using this information an optimization of the gas turbine cooling design.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3