Scaling Considerations for Thermal and Pressure-Sensitive Paint Methods Used to Determine Adiabatic Effectiveness

Author:

McNamara Luke J.1,Fischer Jacob P.1,Rutledge James L.2,Polanka Marc D.3

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson AFB, Fairborn, OH 45433

2. Air Force Institute of Technology, Wright-Patterson AFB, Fairborn, OH 45324

3. Air Force Institute of Technology, Wright-Patterson AFB, Fairborn, OH 45433

Abstract

Abstract To be representative of engine conditions, a measurement of film cooling behavior with an experiment must involve matching certain nondimensional parameters, such as freestream Reynolds number. However, the coolant flowrate must also be scaled between the experiments and engine conditions to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Additionally, selection of the appropriate coolant flowrate parameter to scale from low to high temperatures is a topic of continued uncertainty. Furthermore, experiments are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure-sensitive paints (PSPs) implementing the heat-mass transfer analogy is also common. Thus, the question arises of how the adiabatic effectiveness distributions compare between mass transfer experimental methods and thermal experimental methods and whether these two methods are sensitive to coolant flowrate parameters in different ways. In this study, a thermal technique with IR was compared with a heat-mass transfer method with a PSP on a flat plate model with a 7-7-7 film cooling hole. While adiabatic effectiveness is best scaled by accounting for specific heats with the advective capacity ratio (ACR) using thermal techniques, results revealed that PSP measurements are scaled best with the mass flux ratio (M). The difference in these methods has significant implications for engine designers that rely on PSP experimental data to predict engine thermal behavior as PSP is fundamentally not sensitive to the same relevant physical mechanisms to which thermal methods are sensitive.

Publisher

ASME International

Subject

Mechanical Engineering

Reference17 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3