Adaptive Constraint Handling in Optimization of Complex Structures by Using Machine Learning

Author:

Cai Yuecheng1,Jelovica Jasmin1

Affiliation:

1. University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Abstract Optimization of complex systems requires robust and computationally efficient global search algorithms. Constraints make this a very difficult task, significantly slowing down an algorithm, and can even prevent finding the true Pareto front. This study continues the development of a recently proposed repair approach that exploits infeasible designs to increase computational efficiency of a prominent genetic algorithm, and to find a wider spread of the Pareto front. This paper proposes adaptive and automatized discovery of sensitivity of constraints to variables, i.e. the link, which needed direct designer’s input in the previous version of the repair approach. This is achieved by using machine learning in the form of artificial neural networks (ANN). A surrogate model is afterwards utilized in optimization based on ANN. The proposed approach is used for the recently proposed constraint handling implemented into NSGA-II optimization algorithm. The proposed framework is compared with two other constraint handling methods. The performance is analyzed on a structural optimization of a 178 m long chemical tanker which needs to fulfil class society’s criteria for strength. The results show that the proposed framework is competitive in terms of convergence and spread of the front. This is achieved while discovering the link automatically using ANN, without an input from a user. In addition, computational time is reduced by 60%.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meta-Heuristic and Machine Learning Modelling and Optimizing Complex Systems;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Improved multi-objective structural optimization with adaptive repair-based constraint handling;Engineering Optimization;2022-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3