On the Effects of Tip Clearance and Operating Condition on the Flow Structures Within an Axial Turbomachine Rotor Passage

Author:

Li Yuanchao1,Chen Huang1,Tan David1,Katz Joseph1

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218

Abstract

Abstract Effects of tip clearance size and flowrate on the flow around the tip of an axial turbomachine rotor are studied experimentally. Visualizations and stereo-particle image velocimetry (PIV) measurements in a refractive index-matched facility compare the performance, leakage velocity, and the trajectory, growth rate, and strength of the tip leakage vortex (TLV) for gaps of 0.49% and 2.3% of the blade chord, and two flowrates. Enlarging the tip clearance delays the TLV breakup in the aft part of the rotor passage at high flowrates but causes earlier breakup under pre-stall conditions. It also reduces the entrainment of endwall boundary layer vorticity from the separation point where the leakage and passage flows meet. Reducing the flowrate or tip gap shifts the location of the TLV detachment from the blade suction side (SS) upstream to points where the leakage velocity is 70–80% of the tip speed. Once detached, the growth rates of the total shed circulation are similar for all cases, i.e., varying the gap or flowrate mostly shifts the detachment point. The TLV migration away from the SS decreases with an increasing gap but not with the flowrate. Two mechanisms dominate this migration: initially, the leakage jet pushes the TLV away from the blade at 50% of the leakage velocity. Further downstream, the TLV is driven by its image on the other side of the endwall. Differences in migration rate are caused by the smaller distance between the TLV and its image for the narrow gap, and the increase in initial TLV strength with decreasing flowrate and gap.

Funder

NASA Glenn Research Center

ONR

Publisher

ASME International

Subject

Mechanical Engineering

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3