Experimental Evaluation of Debris Bed Characteristics in Particulate Debris Sedimentation Behaviour

Author:

Shamsuzzaman M.1,Horie Tatsuro1,Fuke Fusata1,Kai Takayuki1,Zhang Bin1,Matsumoto Tatsuya1,Morita Koji1,Tagami Hirotaka2,Suzuki Tohru2,Tobita Yoshiharu2

Affiliation:

1. Kyushu University, Fukuoka, Japan

2. Japan Atomic Energy Agency, O-arai, Ibaraki, Japan

Abstract

After a core-disruptive accident (CDA) in sodium-cooled fast reactor, degraded core material can form debris beds on core-support structure or in the lower inlet plenum of the reactor vessel. This paper reports an experimental evaluation on debris bed formation characteristic in CDA. Investigation of debris bed characteristic during debris sedimentation on core catcher plate is important from recriticality concern and also from cooling considerations to ensure the safety of the reactor main vessel in CDA. In the present study, to evaluate this characteristic, a series of experiments was performed by gravity driven discharge of solid particles as simulant debris from a nozzle into a quiescent water pool in isothermal condition at room temperature. The discharged solid particles with a maximum amount of 10 L finally accumulate on the debris tray, forming a bed with a convex or concave mound depending on the experimental parameters. The nozzle diameter, nozzle height, debris density, debris diameter and debris volume are taken as the experimental parameters. Currently, three types of spherical particles, namely Al2O3, ZrO2 and stainless steel (SS) with diameter of 2, 4, or 6 mm are employed to study the effect of key experimental parameter on debris bed mound shape. In addition, 2 mm non-spherical particles of SS were also utilized to investigate the effect of debris shape on altering mound profile. In experimental investigation with different debris volume, both developing and fully developed mound shapes were observed based on the effect of debris size, density and nozzle diameter. In this study, the investigated particle velocity of main stream settling particles was found increasing with nozzle diameter, which caused a decrement of mound height with an increment of mound dimple area. In nozzle height effect, shrinking of concavity on mound shape was observed with decreasing manner of impact velocity while height is reducing. From the visualization results of the experimental investigations, transformation of bed shape from convex to concave was observed with increasing repose angle incase of 4 mm Al2O3 particle. In general, transformation of bed shape was observed by increasing either nozzle diameter or particle density for all particle type. The present results could be useful to validate numerical models and simulation codes of particulate debris sedimentation.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From debris bed formation to self-leveling behaviors in core disruptive accident of sodium-cooled fast reactor;Nuclear Engineering and Design;2024-03

2. DEM simulations in nuclear engineering: a review of recent progress;Journal of Nuclear Science and Technology;2023-08-13

3. DAVINCI-SP tests for debris bed formation and spreading in a pool with center conical structure under two-phase condition;Nuclear Engineering and Design;2023-04

4. Debris Bed Formation Behavior;Safety of Sodium-Cooled Fast Reactors;2021

5. Introduction;Safety of Sodium-Cooled Fast Reactors;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3