A Probe Technique for Determining the Thermal Conductivity of Tissue

Author:

Cooper T. E.1,Trezek G. J.2

Affiliation:

1. Department of Mechanical Engineering, Naval Postgraduate School, Monterey, Calif.

2. Department of Mechanical Engineering, Thermal Systems Division, University of California, Berkeley, Calif.

Abstract

A small needle-like probe has been developed for the determination of the thermal conductivity of either in-vitro or in-vivo tissue. This probe consists of a copper cylinder having a diameter of 1.5 mm and a length of 22.5 mm. Constantan and copper leads are attached to the center and top of the cylinder, respectively, and as a consequence the probe acts as a thermocouple. The distinguishing characteristic of this probe is that when it is suddenly embedded into a medium at a different temperature, the duration of its temperature–time response is such that it can be related to the thermal properties of the medium. This is accomplished by a match with an analytically determined response curve which accounts for metabolic heat generation, blood flow, and conductive effects. By nondimensionalizing the governing equations for the probe–tissue system, three nondimensional groups for time, temperature, and blood flow emerge. The results of a parametric study of these effects are presented in tabular form. Initially, the probe technique was used to determine the thermal conductivity of a 1 percent agar–water mixture and the results were within 5 percent of water. Subsequently, experimental thermal-conductivity data were obtained on the following in-vitro human organs: liver, kidney, heart, spleen, whole brain, brain gray matter, and brain white matter. In addition, density, specific-heat, and water-content measurements were also obtained on these organs. In-vivo conductivity data have recently been obtained for canine liver with and without blood flow. These data indicate that the in-vivo value without blood flow is approximately the same as the in-vitro value after the organ had been removed and refrigerated for 24 hr. Blood flow, if not considered, resulted in apparent conductivities which were 15 to 25 percent higher than that of the tissue.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3