The Girsanov Linearization Method for Stochastically Driven Nonlinear Oscillators

Author:

Saha Nilanjan1,Roy D.1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Science, Bangalore, Karnataka 560 012, India

Abstract

Abstract For most practical purposes, the focus is often on obtaining statistical moments of the response of stochastically driven oscillators than on the determination of pathwise response histories. In the absence of analytical solutions of most nonlinear and higher-dimensional systems, Monte Carlo simulations with the aid of direct numerical integration remain the only viable route to estimate the statistical moments. Unfortunately, unlike the case of deterministic oscillators, available numerical integration schemes for stochastically driven oscillators have significantly poorer numerical accuracy. These schemes are generally derived through stochastic Taylor expansions and the limited accuracy results from difficulties in evaluating the multiple stochastic integrals. As a numerically superior and semi-analytic alternative, a weak linearization technique based on Girsanov transformation of probability measures is proposed for nonlinear oscillators driven by additive white-noise processes. The nonlinear part of the drift vector is appropriately decomposed and replaced, resulting in an exactly solvable linear system. The error in replacing the nonlinear terms is then corrected through the Radon-Nikodym derivative following a Girsanov transformation of probability measures. Since the Radon-Nikodym derivative is expressible in terms of a stochastic exponential of the linearized solution and computable with high accuracy, one can potentially achieve a remarkably high numerical accuracy. Although the Girsanov linearization method is applicable to a large class of oscillators, including those with nondifferentiable vector fields, the method is presently illustrated through applications to a few single- and multi-degree-of-freedom oscillators with polynomial nonlinearity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3