Fast Sparse Reconstruction of Sound Field Via Bayesian Compressive Sensing

Author:

Hu Ding-Yu1,Liu Xin-Yue1,Xiao Yue2,Fang Yu3

Affiliation:

1. Department of Vehicle Engineering, School of Urban Rail Transportation, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China e-mail:

2. Jiangxi Province Key Laboratory of Precision Drive and Control, Nanchang Institute of Technology, 289 Tianxiang Avenue, Nanchang 330099, China e-mail:

3. Department of Mechanical Engineering, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China e-mail:

Abstract

To overcome the contradiction between the resolution and the measurement cost, various algorithms for reconstructing the sound field with sparse measurement have been developed. However, limited attention is paid to the computation efficiency. In this study, a fast sparse reconstruction method is proposed based on the Bayesian compressive sensing. First, the reconstruction problem is modeled by a sparse decomposition of the sound field via singular value decomposition. Then, the Bayesian compressive sensing is adapted to reconstruct the sound field with sparse measurement of sound pressure. Numerical results demonstrate that the proposed method is applicable to either the spatially sparse distributed sound sources or the spatially extended sound sources. And comparisons with other two sparse reconstruction methods show that the proposed one has the advantages in terms of reconstruction accuracy and computational efficiency. In addition, as it is developed in the framework of multitask compressive sensing, the method can use multiple snapshots to perform reconstruction, which greatly enhances the robustness to noise. The validity and the advantage of the proposed method are further proved by experimental results.

Funder

National Natural Science Foundation of China

Shanghai Education Development Foundation

Publisher

ASME International

Subject

General Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3