Design Ideator: A Conceptual Design Toolbox

Author:

Narsale S.1,Chen Y.1,Mohan M.1,Shah Jami J.2

Affiliation:

1. Arizona State University, Tempe, AZ 85287-6106 e-mail:

2. The Ohio State University, Columbus, OH 43210 e-mail:

Abstract

Computer tools for embodiment and detailed engineering design (computer-aided design (CAD)) evolved rapidly in the past 35 years and are now pervasive throughout the industry. But todays commercial CAD is geometry-centric, not appropriate for early stages of design when detailed geometry and dimensions are not known. This paper describes a framework and a set of interconnected tools for conceptual design. In this system, a broad range of intuitive and experiential concept generation methods have been operationalized and implemented as databases, artifact repositories, knowledge bases, and interactive procedures to promote divergent thinking. The so-called “Design Ideator” includes methods for flexible and dynamic design problem formulation, re-formulation, and restructuring in the form of hierarchical and re-configurable morphological charts. This tool has been continuously enhanced through three phases of user studies and feedback. The main contributions of this work are as follows. First, this research has created a holistic framework with interlaced knowledge bases from a wide range of methods, as opposed to past research that have relied on single experiential only method. Second, we have formulated algorithms to support several intuitive methods, such as contextual shifting, analogical reasoning, provocative stimuli, and combinatorial play.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference60 articles.

1. Experimental Investigation of Progressive Idea Generation Techniques in Engineering Design;Shah,1998

2. Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments;Shah;ASME J. Mech. Des.,2000

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3