Loss Mechanism of Low-Pressure Turbine Secondary Flows Due to Different Incoming Boundary Layers

Author:

Hou Jiangdong1,Zhou Chao2

Affiliation:

1. College of Engineering, Peking University, Beijing 100871, China

2. Turbomachinery Laboratory, College of Engineering Peking University, Beijing 100871, China

Abstract

Abstract In high bypass ratio engines, the flow exits the interturbine duct (ITD) and enters the low-pressure (LP) turbine. This paper aims to understand the effects of the boundary layer at the exit of ITD on the endwall secondary flows and loss of the first blade row in a low-pressure turbine. From the Navier–Stokes equations, the loss is decomposed into the parts generated by the mean vortex as well as turbulence theoretically. The result of computational fluid dynamics (CFD) shows that the incoming boundary layer from the ITD increases the total pressure loss coefficient by 14% compared to the case with uniform inlet condition. Although the distribution of the secondary vortices is strongly affected by the inlet boundary layer, the loss generated by the mean vortex within the blade passage is hardly affected. The analysis based on the turbulent dissipation shows that the dominant factor leading to the loss increase is the turbulent dissipation downstream of the blade trailing edge (TE) near the hub. The mixing process of the wake and the strong counter-rotating vortex pair (CVP) increases the turbulent dissipation significantly. It is also found that a simplified incoming boundary layer defined by the Prandtl's one-seventh power law can not reproduce the complex effects of the incoming boundary layer from the ITD.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3