Recommended Stress Formulae for Tubular Conical Transition Designs

Author:

Ku Albert1,Chen Jieyan2

Affiliation:

1. 900 Town & Country Lane, Suite 300, Houston, TX 77042

2. IntelliSIMS, 900 Town & Country Lane, Suite 300, Houston, TX 77042

Abstract

Abstract For the design of tubular conical transitions, the axial, bending, and hoop stresses at the junctions are required. Among the offshore design standards, API RP-2A, ISO 19902, and NORSOK N-004, various equations exist for the same stress quantity which may cause confusions. The quality of these existing stress formulae will be examined in this paper. The tubular conical stress equations used in the offshore industry started from Boardman’s studies in the 1940s. Recently, Lotsberg re-formulated this problem and applied the results to stress concentration factor (SCF) applications. This paper solves the same set of shell equations but the formulations are cast in a different form. This new format allows for an in-depth examination of existing code equations. In addition, the formulation as presented can be used for modifications to gain higher accuracy. Several recommended new stress formulae are provided. It is observed that the existing code provisions’ accuracy quickly deteriorates for cases where plate thickness in tubular and cone differ. The recommended approach is based on theoretical framework of shell mechanics, which better facilitate tubular/cone force balances when compared with existing equations. The sectional relationships among moment, shear, and hoop loads are also treated consistently using shell theory. The resulted improvements make the recommended formulae more accurate than the existing provisions.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate Limit State Equations and Plasticity of Tubular Conical Transitions;Journal of Offshore Mechanics and Arctic Engineering;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3