On the Stochastic Dynamical Behaviors of a Nonlinear Oscillator Under Combined Real Noise and Harmonic Excitations

Author:

Kong Chen1,Chen Zhen1,Liu Xian-Bin2

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

2. Professor State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

Abstract

The exit problem and global stability of a nonlinear oscillator excited by an ergodic real noise and harmonic excitations are examined. The real noise is assumed to be a scalar stochastic function of an n-dimensional Ornstein–Uhlenbeck vector process which is the output of a linear filter system. Due to the existence of t-dependent excitation, two two-dimensional Fokker–Planck–Kolmogorov (FPK) equations governing the van der Pol variables process and the amplitude-phase process, respectively, are obtained and discussed through a perturbation method and the spectrum representations of the FPK operator and its adjoint operator of the linear filter system, while the detailed balance condition and the strong mixing condition are removed. Based on these FPK equations, the global properties of one-dimensional nonlinear oscillators with external or (and) internal periodic excitations under external or (and) internal real noises can be examined. Finally, a Duffing oscillator excited by a parametric real noise and parametric harmonic excitations is presented as an example, and the mean first-passage time (MFPT) about the oscillator's exit behavior between limit cycles is obtained under both wide-band noise and narrow-band noise excitations. The analytical result is verified by digital simulation.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3