Affiliation:
1. Illinois Institute of Technology, Chicago, IL
Abstract
This paper investigates the optimization of electrode geometry in electrostatic adhesives to enhance adhesion forces for use in robotic climbing and gripping applications. Electrostatic adhesion provides an attachment mechanism that is both controllable and effective over a wide range of surfaces including conductive, semi-conductive, and insulating materials. The adhesives function by utilizing a set of high voltage electrodes that generate an electric field. This electric field polarizes the substrate material, thus generating an adhesion force. Optimizing the geometry of these conductive electrodes provides enhanced adhesion forces that increase attachment robustness. To accomplish this, FEA software was used to evaluate the generated electric field for a given electrode configuration. A range of electrode widths and gap sizes were evaluated to find the optimal configuration. These findings were compared with experimental results for different pad geometries over a range of surface types. Experimental results indicate that on smooth surfaces the simulation results are representative of the actual recorded adhesion forces. Rough surfaces provide similar trends but with varying optimal configurations, likely due to the level of electric field dispersion.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献