The Generation of Machining Process Plans Using a Haptic Virtual Reality System

Author:

Fletcher C. A.1,Ritchie J. M.1,Lim T.1

Affiliation:

1. Heriot Watt University, Edinburgh, UK

Abstract

Computer Aided Process Planning (CAPP) links the design and manufacture of a machined product defining how the product itself will be manufactured. Decisions made during this phase can have a significant impact on product cost, quality and build time; therefore, it is important that process planners have intuitive tools to aid them in effectively creating process plans. However, in spite of being a strong research area, the actual application of CAPP systems in industry is limited and new modern 3D digital tools in this area have not been researched to any real degree. Traditional process planning is carried out either manually or via a CAPP interface and, from this activity, a set of instructions are generated for the shop floor. However, these CAPP processes can be time consuming and subject to inconsistencies. Current research seeks to automate the generation of work instructions by using previous designs and/or artificial intelligence. However, due to the complexity of manufacturing a wide range of products, the limited range of tools available and differing skills of the workforce, it is difficult to reach a generic solution for practical application. The novel pilot study given in this paper presents one of the first pieces of research comparing and contrasting a traditional manual approach to machined part process planning with an alternative haptic virtual environment. Within this, an operator can simulate the machining of a simple part using a virtual drilling and milling process via a haptic routing interface. All of the operator input is logged in the background with the system automatically generating shop floor instructions from this log file. Findings show that users found the virtual system to be more intuitive and required less mental workload than traditional manual methods. Also their perceptions for the future were that they would need less support for learning and would progress to final planning solutions more quickly.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3