Instantaneous Center Manifolds and Nonlinear Modes of Vibration

Author:

Ardeh Hamid A.1,Allen Matthew S.1

Affiliation:

1. University of Wisconsin-Madison, Madison, WI

Abstract

Nonlinear Normal Modes (NNM) have been defined in various ways; first by Rosenberg as a subset of periodic solutions of a nonlinear system and then by Shaw and Pierre as invariant manifolds tangent to the vector field of a nonlinear system at its equilibrium point. This work presents an alternative approach, namely Instantaneous Center Manifold (ICM), that extends the concept of modes of vibration to nonlinear systems, using both periodicity and invariance properties. Instantaneous Center Manifolds are invariant manifolds that contain all of the periodic invariant solutions of the nonlinear oscillatory system. The ICM approach is explained through three simple analytical examples, and is shown to be capable of finding solutions that have been remaining latent using the aforementioned approaches. New branches of nonlinear normal modes, separate from the main branches that are a continuation of linear modes, are illustrated. It is shown that these new branches connect the main branches of Rosenberg’s NNMs, and make it possible to travel from one main branch to another. Some natural extensions and applications of the ICM approach are briefly discussed in the conclusion.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relationships between nonlinear normal modes and response to random inputs;Mechanical Systems and Signal Processing;2017-02

2. Numerical computation of nonlinear normal modes in mechanical engineering;Journal of Sound and Vibration;2016-03

3. Multiharmonic Multiple-Point Collocation: A Method for Finding Periodic Orbits of Strongly Nonlinear Oscillators;Journal of Computational and Nonlinear Dynamics;2015-11-19

4. A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models;Mechanical Systems and Signal Processing;2014-05

5. Relationships between Nonlinear Normal Modes and Response to Random Inputs;55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2014-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3