Feasibility of a 5x Speedup in System Development due to META Design

Author:

de Weck Olivier L.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

The main goal of META design is to achieve a factor five (5x) improvement in product development speed for cyber-electro-physical systems compared to current practice. The method claims to achieve this speedup by a combination of three main mechanisms: 1. The deliberate use of layers of abstraction. High-level functional requirements are used to explore architectures immediately rather than waiting for downstream level 2, 3, 4 … requirements to be defined. 2. The development and use of an extensive and trusted component (C2M2L) model library. Rather than designing all components from scratch, the META process allows importing component models directly from a library in order to quickly compose functional designs. 3. The ability to find emergent behaviors and problems ahead of time during virtual Verification and Validation (V&V) and generating designs that are correct-by-construction allows a more streamlined design process and avoids costly design iterations that often lead to expensive design changes. This paper quantifies the impact of these main META mechanisms with a sophisticated System Dynamics (SD) model that allows simulating development projects over time. META compares favorably against a simulation of a traditional design process due to the generation of late engineering changes in a traditional design-build-test-redesign environment. The benchmark case analyzed in this paper contained 3,000 requirements, and the results show a dramatic improvement for project completion schedule with a demonstrated speedup factor of 4.4 (70 months versus about 16 months). In the simulated META process we used 3 layers of abstraction, 50% novelty and a model library integrity of 80% with 70% of problems are caught early. The results were also validated against data from the B777 Electric Power System (EPS) design project at UTC where a speedup factor of 3.8 was demonstrated. The paper contains a useful sensitivity analysis that helps establish requirements and bounds on the META process and tool-chain itself that should enable the desired 5x speedup factor.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3