Particle Manipulation in Insulator Based Dielectrophoretic Devices1

Author:

Gencoglu Aytug,Olney David,LaLonde Alexandra,Koppula Karuna S.,Lapizco-Encinas Blanca H.1

Affiliation:

1. Associate Professor e-mail:  Microscale Bioseparations Laboratory, Chemical and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623

Abstract

Microfluidic devices can make a significant impact in many fields where obtaining a rapid response is critical, particularly in analyses involving biological particles, from deoxyribonucleic acid (DNA) and proteins, to cells. Microfluidics has revolutionized the manner in which many different assessments/processes are carried out, since it offers attractive advantages over traditional bench-scale techniques. Some of the advantages are: small sample and reagent amounts, higher resolution and sensitivity, improved level of integration and automation, lower cost and much shorter processing times. There is a growing interest on the development of techniques that can be used in microfluidics devices. Among these, electrokinetic techniques have shown great potential due to their flexibility. Dielectrophoresis (DEP) is an electrokinetic mechanism that refers to the interaction of a dielectric particle with a spatially non-uniform electric field; this leads to particle movement due to polarization effects. DEP offers great potential since it can be carried out employing DC and AC electric fields, and neutral and charged particles can be manipulated. This work is focused on the use of insulator based dielectrophoresis (iDEP), a novel dielectrophoretic mode that employs arrays of insulating structures to generate dielectrophoretic forces. Successful micro and nanoparticles manipulation can be achieved employing iDEP, due to its unique characteristics that allow for great flexibility. In this work, microchannels containing arrays of cylindrical insulating posts were employed to concentrate, sort and separate microparticles. Mathematical modeling with COMSOL® was performed to identify optimal device configuration. Different sets of experiments were carried out employing DC and AC potentials. The results demonstrated that effective and fast particle manipulation is possible by fine tuning dielectrophoretic force and electroosmotic flow.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Reference24 articles.

1. Dielectrophoretic Monitoring of Microorganisms in Environmental Applications;Electrophoresis,2011

2. The Origins and the Future of Microfluidics;Nature,2006

3. A Continuous DC-Insulator Dielectrophoretic Sorter of Microparticles;J. Chromatogr. A,2011

4. DC Insulator Dielectrophoretic Applications in Microdevice Technology: A Review;Anal. Bioanal. Chem.,2010

5. Phenomenological Aspect of Particle Trapping by Dielectrophoresis;J. Appl. Phys.,1984

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3