Frequency Dependency of Measured and Predicted Rotordynamic Coefficients for a Load-On-Pad Flexible-Pivot Tilting-Pad Bearing

Author:

Rodriguez Luis E.1,Childs Dara W.2

Affiliation:

1. Sulzer Hickham, Inc., La Porte, TX 77571

2. Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

Experimental dynamic-stiffness-coefficient results are presented for a high-speed, lightly loaded, load-on-pad, flexible-pivot tilting-pad (FPTP) bearing. Results show that the real parts of the direct dynamic-stiffness are quadratic functions of the excitation frequency. Frequency independent [M], [K], and [C] matrices can be used in place of frequency dependent [K] and [C] matrices to model the FPTP bearing for the conditions tested. The model reduction that results in moving from twelve degrees of freedom (three degrees of freedom for each of four pads) to two degrees of freedom in the bearing reaction model seems to account for most of the observed and predicted frequency dependency. Predictions indicate that pad and fluid inertia have a secondary impact for excitation frequencies out to synchronous frequency. Experimental results are compared to numerical predictions from models based on: (i) The Reynolds equation, and (ii) a Navier-Stokes (NS) equations bulk-flow model that retains the temporal and convective fluid inertia terms. The NS bulk-flow model results correlate better with experimental dynamic stiffness results, including added-mass terms. Both models underestimate the measured added-mass coefficients for the full excitation range; however, they do an adequate job for excitation frequencies up to synchronous frequency. The advantage of using a frequency-independent [M]-[K]-[C] model is that rotordynamic stability calculations become noniterative and much quicker than for a frequency dependent [K]-[C] model. However, these results only apply to this bearing at the conditions tested. Conventional tilting pad and/or FPTP bearings with different geometry and operating conditions (or even this FPTP bearing at higher loads) may require a frequency-dependent [K]-[C] model.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference14 articles.

1. Application of High Speed and High Performance Fluid Film Bearings in Rotating Machinery;Zeidan

2. The Influence of Fluid Inertia on the Dynamic Properties of Journal Bearings;Reinhardt;ASME J. Lubr. Technol.

3. Turbulent Flow, Flexure-Pivot Hybrid Bearings for Cryogenic Applications;San Andrés;ASME J. Tribol.

4. The Eigenvalue Dependence of Reduced Tilting Pad Bearing Stiffness and Damping Coefficients;Barrett;Tribol. Trans.

5. Load Direction Effects on Measured Static and Dynamic Operating Characteristics of Tilting Pad Journal Bearings;Brechting

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3