Historical Review of Combined Experimental and Computational Approaches for Investigating Annulus Fibrosus Mechanics

Author:

Zhou Minhao1,Werbner Benjamin1,O'Connell Grace2

Affiliation:

1. Mechanical Engineering Department, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740

2. Mechanical Engineering Department, University of California, Berkeley, 5122 Etcheverry Hall, #1740, Berkeley, CA 94720-1740; Department of Orthopaedic Surgery, University of California, San Francisco, 513 Parnassus Ave., Suite S-1161, San Francisco, CA 94143

Abstract

Abstract Intervertebral disc research has sought to develop a deeper understanding of spine biomechanics, the complex relationship between disc health and back pain, and the mechanisms of spinal injury and repair. To do so, many researchers have focused on characterizing tissue-level properties of the disc, where the roles of tissue subcomponents can be more systematically investigated. Unfortunately, experimental challenges often limit the ability to measure important disc tissue- and subtissue-level behaviors, including fiber–matrix interactions, transient nutrient and electrolyte transport, and damage propagation. Numerous theoretical and numerical modeling frameworks have been introduced to explain, complement, guide, and optimize experimental research efforts. The synergy of experimental and computational work has significantly advanced the field, and these two aspects have continued to develop independently and jointly. Meanwhile, the relationship between experimental and computational work has become increasingly complex and interdependent. This has made it difficult to interpret and compare results between experimental and computational studies, as well as between solely computational studies. This paper seeks to explore issues of model translatability, robustness, and efficient study design, and to propose and motivate potential future directions for experimental, computational, and combined tissue-level investigations of the intervertebral disc.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference126 articles.

1. Degeneration of the Intervertebral Disc;Arthritis Res. Ther.,2003

2. Intervertebral Disc Tissues,2015

3. What is Intervertebral Disc Degeneration, and What Causes It?;Spine,2006

4. Physical Properties and Functional Biomechanics of the Spine,1990

5. Low Back Pain in Relation to Lumbar Disc Degeneration;Spine,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3