An FFT-Based Transient Flash Temperature Model for General Three-Dimensional Rough Surface Contacts

Author:

Gao Jianqun1,Lee Si C.1,Ai Xiaolan2,Nixon Harvey2

Affiliation:

1. Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210

2. The Timken Company, Canton, OH 44706

Abstract

A transient flash temperature model was developed based on a Fast Fourier Transform method. An analytical expression for the heat partition function was obtained. Together, these substantially increase the speed of flash temperature calculations. The effect of surface topography on the flash temperature was examined. According to the simulation results, the surface with a longitudinal roughness produced a noticeably higher flash temperature than the surface with a transverse roughness. The simulation results also indicate that there is a significant cross-heating activity between the asperities; the temperature profiles appeared surprisingly gradual although their contact pressures had extremely sharp peaks. [S0742-4787(00)04002-9]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference17 articles.

1. Blok, H. , 1937, “Seizure Delay Method for Determining the Protection Against Scuffing Afforded by Extreme Pressure Lubricants,” J. Soc. Auto Eng., 44, No. 5, pp. 175–185.

2. Lee, S. C., and Cheng, H. S., 1991, “Scuffing Theory Modeling and Experimental Correlations,” ASME J. Tribol., 113, pp. 327–334.

3. Blok, H , 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact under Oiliness Lubricating Conditions,” Pro. General Discussion on Lubrication, Inst. Mech. Engrs., London, 2, pp. 222–235.

4. Jaeger, J. C. , 1942, “Moving Sources of Heat and the Temperature at Sliding Contacts,” J. Proc. Soc., N.S.W., 76, pp. 203–224.

5. Archard, J. F. , 1959, “The Temperature of Rubbing Surfaces,” Wear, 2, pp. 438–455.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3