Delamination During Drilling in Composite Laminates

Author:

Ho-Cheng H.1,Dharan C. K. H.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Delamination is the major concern during drilling of composite laminates. Delamination, in addition to reducing the structural integrity of the laminate, also results in poor assembly tolerance and has the potential for long-term performance deterioration. Drilling-induced delamination occurs both at the entrance and at the exit planes. This paper presents an analysis of delamination during drilling. The analysis uses a fracture mechanics approach in which the opening-mode delamination fracture toughness, a material parameter, is used with a plate model of the laminate. The analysis predicts an optimal thrust force (defined as the minimum force above which delamination is initiated) as a function of drilled hole depth. Good agreement is achieved with data obtained from drilling carbon fiber-epoxy laminates. An advantage of the model is that it can predict varying degrees of delamination for other materials, such as glass fiber-epoxy, and for hybrid composites. In addition, the optimal thrust force for no delamination can be used to control a drilling machine with thrust force feedback for maximizing productivity.

Publisher

ASME International

Subject

General Medicine

Cited by 442 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of exit delamination mechanism and critical axial force in ball helical milling of CFRP;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-08-16

2. Experimental investigations on high speed drilling of unidirectional GFRP composites;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-08-08

3. Assessment of delamination occurrence in the drilling process of the carbon fiber/PEI composite;2024-07-16

4. Research on axial cutting force fluctuation and periodicity in helical milling of CFRP;The International Journal of Advanced Manufacturing Technology;2024-06-26

5. Tool wear in cutting carbon fiber reinforced polymer/ceramic matrix composites: A review;Composite Structures;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3