Numerical Simulation of Damage Evolution and Life Prediction for Two Commercial Fe–Cr–Ni Alloys Subjected to Mechanical and Environmental Factors

Author:

Shen Limin1,Jin Peibin1,Wang Yanfei1,Gong Jianming2

Affiliation:

1. School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China e-mail:

2. College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China e-mail:

Abstract

Associated with mechanical and environmental degradation, such as low-oxygen potential, high carbon activity, and high operating temperature, premature failure generally occurs in ethylene cracking furnace tube. This work is aimed at damage evolution numerical simulation and life prediction of two commercial Fe–Cr–Ni alloys (HP40Nb alloy and KHR45A alloy) under different operating temperatures, subjected to coupled carburization damage and creep damage. The results show that carburization is the most important factor that caused ethylene cracking furnace tube to rupture ahead of service time. Increased operating temperatures accelerate the damage rate markedly for the two alloys. For HP40Nb alloy and KHR45A alloy, the service life at 1223 K is almost 2.5 and 3 times higher than the value at 1323 K, respectively. Due to a higher mass of Ni/(Cr + Fe) ratio, the service life of KHR45A alloy is longer than that of HP40Nb alloy at the same operating condition. Distribution of von Mises stress σe and maximum principal stress σp along the inner surface and the outer surface of tubes is different to each other with damage evolution at different operating temperatures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3