Gas Turbine Combustion Technology Reducing Both Fuel-NOx and Thermal-NOx Emissions for Oxygen-Blown IGCC With Hot/Dry Synthetic Gas Cleanup

Author:

Hasegawa Takeharu1,Tamaru Takashi2

Affiliation:

1. Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka-shi, Kanagawa-ken 240-0196, Japan

2. Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-higashi-machi, Chofu-shi, Tokyo 182-8522, Japan

Abstract

Abstract In order to improve the thermal efficiency of the oxygen-blown integrated gasification combined cycle (IGCC) and to meet stricter environmental restrictions among cost-effective options, a hot/dry synthetic gas cleanup is one of the most hopeful choices. The flame temperature of medium-Btu gasified fuel used in this system is high so that NOx formation by nitrogen fixation results to increase significantly. Additionally, the gasified fuel contains nitrogenous compound, as ammonia, and it produces nitrogen oxides, the fuel NOx, in the case of employing the hot/dry gas cleanup. Low NOx combustion technology to reduce both fuel-NOx and thermal-NOx emissions has been required to protect the environment and ensure low cost operations for all kinds of oxygen-blown IGCC. In this paper, we have demonstrated the effectiveness of two-stage combustion and nitrogen injection techniques, and also showed engineering guidelines for the low-NOx combustor design of oxygen-blown gasified, medium-Btu fuels. The main results obtained are as follows: (1) Based on the basic combustion tests using a small diffusion burner, we clarified that the equivalence ratio at the primary combustion zone has to be adjusted according to the fuel conditions, such as methane concentration, CO∕H2 molar ratio, and calorific values of gasified fuels in the case of the two-stage combustion method for reducing fuel-NOx emissions. (2) From the combustion tests of the medium-Btu fueled combustor, two-stage combustion with nitrogen direct injection into the combustor results in reductions of NOx emissions to 34ppm (corrected at 16% O2) or less under the gas turbine operational conditions of 25% load or higher for IGCC in the case where the gasified fuel contains 0.1% methane and 500ppm of ammonia. Through nitrogen direct injection, the thermal efficiency of the plant improved by approximately 0.3% (absolute), compared with the case where nitrogen was premixed with gasified fuel. The CO emission concentration decreased drastically, as low as 20ppm, or combustion efficiency was kept higher than 99.9%. The above results have shown that a two-stage combustion method with nitrogen direct injection is very effective for reducing both fuel-NOx and thermal-NOx emissions at once in IGCC, and it shows the bright prospects for low NOx and stable combustion technology of medium-Btu fuel.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. Test Results of 200T/D IGCC Coal Gasification Pilot Plant;Ichikawa

2. A Study of Gasification Reactivity of Air-Blown Entrained Flow Coal Gasifier;Kurimura

3. Nakayama, T., Ito, S., Matsuda, H., Shirai, H., Kobayashi, M., Tanaka, T., and Ishikawa, H., 1990, “Development of Fixed-Bed Type Hot Gas Cleanup Technologies for Integrated Coal Gasification Combined Cycle Power Generation,” Rep. No. EW89015, Central Research Institute of Electric Power Industry, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100-8126 Japan.

4. Nakata, T., Sato, M., Ninomiya, T., Yoshine, T., and Yamada, M., 1993, “Effect of Pressure on Combustion Characteristics in LBG-Fueled 1300°C-Class Gas Turbine,” ASME Paper No. 93-GT-121.

5. Effect of Pressure on Emission Characteristics in LBG-Fueled 1500°C-Class Gas Turbine;Hasegawa;Trans. ASME: J. Eng. Gas Turbines Power

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3