A Graphical, User-Driven Newton-Raphson Technique for Use in the Analysis and Design of Compliant Mechanisms

Author:

Hill T. C.1,Midha A.2

Affiliation:

1. Mechanical Engineering Department, Mississippi State University, Mississippi State, MI 39762

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

The analysis and design of compliant mechanisms, undergoing large (geometrically nonlinear) deflections, have been assisted by the Newton-Raphson method to find the load which satisfy a prescribed set of force and displacement boundary conditions. This paper introduces a graphical, user-driven Newton-Raphson technique that allows easy access to good initial design variable estimates, and subsequently accurate and expeditious solutions. These design variables may include loads as well as material and geometric properties of the beam segments composing the mechanism. A line search step-restriction technique is included to enhance the stability of the method. The method uses six-degree-of-freedom planar beam elements in a chain calculation that cumulatively evaluates the large deflections corresponding to a given load set.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3