Affiliation:
1. School of Mechanical and Aerospace Engineering, Oklahoma State University, 201 General Academic Building, Stillwater, OK 74078
Abstract
Abstract
Despite the large number of studies of intraventricular filling dynamics for potential clinical applications, little is known as to how the diastolic vortex ring properties are altered with reduction in internal volume of the cardiac left ventricle (LV). The latter is of particular importance in LV diastolic dysfunction (LVDD) and in congenital diseases such as hypertrophic cardiomyopathy (HCM), where LV hypertrophy (LVH) can reduce LV internal volume. We hypothesized that peak circulation and the rate of decay of circulation of the diastolic vortex would be altered with reducing end diastolic volume (EDV) due to increasing confinement. We tested this hypothesis on physical models of normal LV and HCM geometries, under identical prescribed inflow profiles and for multiple EDVs, using time-resolved particle image velocimetry (TR-PIV) measurements on a left heart simulator. Formation and pinch-off of the vortex ring were nearly unaffected with changes to geometry and EDV. Pinch-off occurred before the end of early filling (E-wave) in all test conditions. Peak circulation of the vortex core near the LV outflow tract (LVOT) increased with lowering EDV and was lowest for the HCM model. The rate of decay of normalized circulation in dimensionless formation time (T*) increased with decreasing EDV. When using a modified version of T* that included average LV cross-sectional area and EDV, normalized circulation of all tested EDVs collapsed closely in the normal LV model (10% maximum difference between EDVs). Collectively, our results show that LV shape and internal volume play a critical role in diastolic vortex ring dynamics.
Funder
Oklahoma Center for the Advancement of Science and Technology
Subject
Physiology (medical),Biomedical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献