Investigating the Effects of Demographics on Shoulder Morphology and Density Using Statistical Shape and Density Modeling

Author:

Soltanmohammadi Pendar1,Elwell Josie2,Veeraraghavan Vishnu2,Athwal George S.3,Willing Ryan4

Affiliation:

1. School of Biomedical Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada

2. Department of Mechanical Engineering, State University of New York at Binghamton, P.O. Box 6000, Binghamton, NY 13902-6000

3. Roth | McFarlane Hand & Upper Limb Centre, St. Joseph's Health Care London, STN B, P.O. Box 5777, London, ON N6A 4V2, Canada

4. Department of Mechanical Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada

Abstract

Abstract A better understanding of how the shape and density of the shoulder vary among members of a population can help design more effective population-based orthopedic implants. The main objective of this study was to develop statistical shape models (SSMs) and statistical density models (SDMs) of the shoulder to describe the main modes of variability in the shape and density distributions of shoulder bones within a population in terms of principal components (PCs). These PC scores were analyzed, and significant correlations were observed between the shape and density distributions of the shoulder and demographics of the population, such as sex and age. Our results demonstrated that when the overall body sizes of male and female donors were matched, males still had, on average, larger scapulae and thicker humeral cortical bones. Moreover, we concluded that age has a weak but significant inverse effect on the density within the entire shoulder. Weak and moderate, but significant, correlations were also found between many modes of shape and density variations in the shoulder. Our results suggested that donors with bigger humeri have bigger scapulae and higher bone density of humeri corresponds with higher bone density in the scapulae. Finally, asymmetry, to some extent, was noted in the shape and density distributions of the contralateral bones of the shoulder. These results can be used to help guide the designs of population-based prosthesis components and pre-operative surgical planning.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3