The Effect of the Loading Rate on the Full-Field Strain Distribution on the Surface on the Intervertebral Discs

Author:

Maria Luisa Ruspi1,Luca Cristofolini1

Affiliation:

1. Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum – Università di Bologna, Via Umberto Terracini 24-28, Bologna 40131, Italy

Abstract

Abstract Contrasting results are reported when the spine is tested at different strain rates. Tissue specimens from the ligaments or the intervertebral discs (IVD, including annulus fibrosus and nucleus pulposus) exhibit higher stiffness and lower dissipation at high strain rates. Counterintuitively, when spine segments are tested at high rates, the hysteresis area and loop width increase. It is unclear how the load is shared between the different structures at different loading rates. The hypotheses of this study were: (i) As the IVD stiffens at higher loading rates, the strain distribution around the disc would be different depending on the loading rate; (ii) Preconditioning attenuates the strain-rate dependency of the IVD, thus making differences in strain distribution smaller at the different rates. Six segments of three vertebrae (L4–L6) were extracted from porcine spines and tested in presso-flexion at different loading rates (reaching full load in 0.67, 6.7, and 67 s). The full-field strain maps were measured using digital image correlation on the surface of the IVDs from lateral. The posterior-to-anterior trends of the strain were computed in detail for each IVD, and compared between loading rates. The values and the direction of principal strain on the surface of the IVDs, vertebrae, and endplates remained unchanged at different rates. In the transition zone between IVD and vertebra, only slight differences due to the loading rate appeared but with no statistical significance. These findings will allow better understanding of the rate-dependent behavior and failure of the IVD.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3