Aerodynamic-Rotordynamic Interaction in Axial Compression Systems—Part II: Impact of Interaction on Overall System Stability

Author:

Al-Nahwi Ammar A.1,Paduano James D.2,Nayfeh Samir A.3

Affiliation:

1. Abqaiq Plants, Saudi Arabian Oil Company (Saudi Aramco), Abqaiq, Saudi Arabia 31311

2. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

This paper presents an integrated treatment of the dynamic coupling between the flow field (aerodynamics) and rotor structural vibration (rotordynamics) in axial compression systems. This work is motivated by documented observations of tip clearance effects on axial compressor flow field stability, the destabilizing effect of fluid-induced aerodynamic forces on rotordynamics, and their potential interaction. This investigation is aimed at identifying the main nondimensional design parameters governing this interaction, and assessing its impact on overall stability of the coupled system. The model developed in this work employs a reduced-order Moore-Greitzer model for the flow field, and a Jeffcott-type model for the rotordynamics. The coupling between the fluid and structural dynamics is captured by incorporating a compressor pressure rise sensitivity to tip clearance, together with a momentum based model for the aerodynamic forces on the rotor (presented in Part I of this paper). The resulting dynamic model suggests that the interaction is largely governed by two nondimensional parameters: the sensitivity of the compressor to tip clearance and the ratio of fluid mass to rotor mass. The aerodynamic-rotordynamic coupling is shown to generally have an adverse effect on system stability. For a supercritical rotor and a typical value of the coupling parameter, the stability margin to the left of the design point is shown to decrease by about 5% in flow coefficient (from 20% for the uncoupled case). Doubling the value of the coupling parameter not only produces a reduction of about 8% in the stability margin at low flow coefficients, but also gives rise to a rotordynamic instability at flow coefficients 7% higher than the design point.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3