Comparison and Optimization of Heliostat Canting Methods

Author:

Buck R.1,Teufel E.1

Affiliation:

1. German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

Abstract

Heliostat canting (alignment of mirror facets) is known to have a major influence on the optical efficiency of heliostat fields and therefore on the power output of solar tower plants. In recent years several canting concepts were used, mainly on- and off-axis canting. Several new canting concepts, such as stretched-parabolic or target-aligned canting, were proposed in order to improve the performance of heliostats. As solar power plants become economically more attractive, knowledge about the influence of canting becomes more important. In this context, the influence of several factors on the canting method is discussed and optimal canting strategies are described. The considered factors comprise plant power level, heliostat position in the field, heliostat area, receiver dimension, and site latitude. It is concluded that the target-aligned tracking method is superior to all other variants in the majority of cases. As for the standard azimuth-elevation tracking methods, not one of these exhibits a clear advantage. It is only the on-axis method that performs worst in all cases.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3