Diffusion Theory Applied to Tool-Life Stochastic Modeling Under a Progressive Wear Process

Author:

Braglia Marcello1,Castellano Davide1

Affiliation:

1. Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Via Bonanno Pisano 25/B, Pisa 56126, Italy e-mail:

Abstract

In this paper, a novel approach to the derivation of the tool-life distribution, when the tool useful life ends after a progressive wear process, is presented. It is based on the diffusion theory and exploits the Fokker–Planck equation. The Fokker–Planck coefficients are derived on the basis of the injury theory assumptions. That is, tool-wear occurs by detachment of small particles from the tool working surfaces, which are assumed to be identical and time-independent. In addition, they are supposed to be small enough to consider the detachment process as continuous. The tool useful life ends when a specified total volume of material is thus removed. Tool-life distributions are derived in two situations: (i) both Fokker–Planck coefficients are time-dependent only and (ii) the diffusion coefficient is neglected and the drift is wear-dependent. Theoretical results are finally compared to experimental data concerning flank wear land in continuous turning of a C40 carbon steel bar adopting a P10 type sintered carbide insert. The adherence to the experimental data of the tool-life distributions derived exploiting the Fokker–Planck equation is satisfactory. Moreover, the tool-life distribution obtained, when the diffusion coefficient is neglected and the drift is wear-dependent, is able to well-represent the wear behavior at intermediate and later times.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

1. A Synthesis of Decision Models for Tool Management in Automated Manufacturing;Manage. Sci.,1993

2. Fracture and Wear as Factors Affecting Stochastic Tool-Life Models and Machining Economics;ASME J. Manuf. Sci. Eng.,1977

3. Application of Particle Swarm Optimisation in Artificial Neural Network for the Prediction of Tool Life;Int. J. Adv. Manuf. Technol.,2007

4. Determining Optimal Replacement Time for Metal Cutting Tools;Eur. J. Oper. Res.,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3