Experimental Validation of Graph-Based Hierarchical Control for Thermal Management

Author:

Pangborn Herschel C.1,Koeln Justin P.2,Williams Matthew A.3,Alleyne Andrew G.1

Affiliation:

1. Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:

2. Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080 e-mail:

3. Northrop Grumman Corporation, Falls Church, VA 22042 e-mail:

Abstract

This paper proposes and experimentally validates a hierarchical control framework for fluid flow systems performing thermal management in mobile energy platforms. A graph-based modeling approach derived from the conservation of mass and energy inherently captures coupling within and between physical domains. Hydrodynamic and thermodynamic graph-based models are experimentally validated on a thermal-fluid testbed. A scalable hierarchical control framework using the graph-based models with model predictive control (MPC) is proposed to manage the multidomain and multi-timescale dynamics of thermal management systems. The proposed hierarchical control framework is compared to decentralized and centralized benchmark controllers and found to maintain temperature bounds better while using less electrical energy for actuation.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference34 articles.

1. Dooley, M., Lui, C., and Newman, R. W., 2013, “Efficient Propulsion, Power, and Thermal Management Integration,” AIAA Paper No. 2013-368110.2514/6.2013-3681.

2. A Hierarchical Control Strategy for Aircraft Thermal Systems,2014

3. Bodie, M., Russell, G., Mccarthy, K., Lucus, E., Zumberge, J., and Wolff, M., 2010, “Thermal Analysis of an Integrated Aircraft Model,” AIAA Paper No. 2010-288.10.2514/6.2010-288

4. Dynamic Thermal Management for Aerospace Technology: Review and Outlook;J. Thermophys. Heat Transfer,2017

5. Steady-Periodic Acceleration Effects on the Performance of a Loop Heat Pipe;J. Thermophys. Heat Transfer,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Agent Approach to Safe Control of Energy Systems using Control Barrier Functions;2024 American Control Conference (ACC);2024-07-10

2. Learning of Energy Primitives for Electrified Aircraft;2024 American Control Conference (ACC);2024-07-10

3. A review on challenges concerning thermal management system design for medium duty electric vehicles;Applied Thermal Engineering;2024-01

4. An Approach to Robust Co-Design of Plant and Closed-Loop Controller;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

5. Iterative Learning Model Predictive Control for Thermal Management of Urban Air Mobility Vehicles*;2023 IEEE Conference on Control Technology and Applications (CCTA);2023-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3