Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump

Author:

Wang Yefang1,Zhang Fan1,Yuan Shouqi1,Chen Ke1,Wei Xueyuan1,Appiah Desmond1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

Abstract

Abstract In this work, the unsteady Reynolds-averaged Navier–Stokes (URANS) and three hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) models are employed to resolve the vortical flows in a typical single-stage side channel pump, to evaluate the suitability of these advanced turbulence models in predicting the pump hydraulic performance and unstable swirling flows. By the comparison of the overall performance, it can be observed that the results obtained by scale-adapted simulation (SAS) are closer to test data than shear stress transport (SST), detached eddy simulation (DES) and filter-based model (FBM). Simultaneously, the distribution of axial velocity on the plane near the interface is used to describe the position and intensity of internal fluid exchange between impeller and side channel. It is obvious that the intensity of mass flow exchange is strong near the inner and outer edges. Then, the vortex core region illustrates that the vortex is easily produced near the interface due to internal fluid exchange. Finally, the evolutions of circumferential in-plane vortical structures are presented to further account for the process of fluid exchange and the main vortex flows. It reveals that the recirculation flow presents a strong instability during 6–7 blade pitches as the fluid enters into the impeller and the flow is stable in downstream 7–8 blade pitches. Besides, the flow turns to be unsteady near outlet affected by the sudden change of fluid direction. This work could provide some suggestions for the choice of appropriate turbulence model in simulating strong swirling flows.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Senior Talent Research Start-up Foundation of Jiangsu University

Special Supported Project of China Postdoctoral Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering

Reference57 articles.

1. Positive Displacement Pumps-Performance and Application,1994

2. Positive Displacement Reciprocating Pump Fundamentals-Power and Direct Acting Types,2008

3. Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterisation in a Centrifugal Pump;Renewable Energy,2019

4. Meakhail, T., El-Sallak, M., and Serag-Eldin, M. A., 1996, “ Effect of Guide Blades Fixed in the Side Channel on Performance of Peripheral Pumps,” M.S. thesis, Cairo University, Egypt.

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3