Shear Effects on Scalar Transport in Double Diffusive Convection1

Author:

Sichani Pejman Hadi1,Marchioli Cristian2,Zonta Francesco3,Soldati Alfredo4

Affiliation:

1. Department of Engineering and Architecture (DPIA), University of Udine, Udine 33100, Italy; Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Vienna 1060, Austria

2. Department of Engineering and Architecture (DPIA), University of Udine, Udine 33100, Italy

3. Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Vienna 1060, Austria

4. Institute of Fluid Mechanics and Heat Transfer, Vienna University of Technology, Vienna 1060, Austria; Department of Engineering and Architecture (DPIA) University of Udine, Udine 33100, Italy,

Abstract

Abstract In this article, we examine the effect of shear on scalar transport in double diffusive convection (DDC). DDC results from the competing action of a stably stratified, rapidly diffusing scalar (temperature) and an unstably stratified, slowly diffusing scalar (salinity), which is characterized by fingering instabilities. We investigate, for the first time, the effect of shear on the diffusive and convective contributions to the total scalar transport flux within a confined fluid layer, examining also the associated fingering dynamics and flow structure. We base our analysis on fully resolved numerical simulations under the Oberbeck–Boussinesq condition. The problem has five governing parameters: The salinity Prandtl number, Prs (momentum-to-salinity diffusivity ratio); the salinity Rayleigh number, Ras (measure of the fluid instability due to salinity differences); the Lewis number, Le (thermal-to-salinity diffusivity ratio); the density ratio, Λ (measure of the effective flow stratification), and the shear rate, Γ. Simulations are performed at fixed Prs, Ras, Le, and Λ, while the effect of shear is accounted for by considering different values of Γ. Preliminary results show that shear tends to damp the growth of fingering instability, leading to highly anisotropic DDC dynamics associated with the formation of regular salinity sheets. These dynamics result in significant modifications of the vertical transport rates, giving rise to negative diffusive fluxes of salinity and significant reduction of the total scalar transport, particularly of its convective part.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3