Fuel Nozzle Aerodynamic Design Using CFD Analysis

Author:

Crocker D. S.1,Fuller E. J.1,Smith C. E.1

Affiliation:

1. CFD Research Corporation, Huntsville, AL 35805

Abstract

The aerodynamic design of airflow passages in fuel injection systems can be significantly enhanced by the use of CFD analysis. Attempts to improve the efficiency of the fuel nozzle design process by using CFD analyses have generally been unsuccessful in the past due to the difficulties of modeling swirling flow in complex geometries. Some of the issues that have been obstacles to successful and timely analysis of fuel nozzle aerodynamics include grid generation, turbulence models, and definition of boundary conditions. This study attempts to address these obstacles and demonstrate a CFD methodology capable of modeling swirling flow within the internal air passages of fuel nozzles. The CFD code CFD-ACE was used for the analyses. Results of nonreacting analyses and comparison with experimental data are presented for three different fuel nozzles. The three nozzles have distinctly different designs (including axial and radial inflow swirlers) and thus demonstrate the flexibility of the design methodology. Particular emphasis is given to techniques involved in predicting the effective flow area (ACd) of the nozzles. Good agreement between CFD predictions of the ACd (made prior to experiments) and the measured ACd was obtained. Comparisons between predicted and measured velocity profiles also showed good agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3