Design and Analysis of an Active Swing Decoupling Compliant Mechanism With Multiple Co-Directional Input Branches

Author:

Liu Guoshuai1,Liu Pengbo2,Yan Peng1,Shi Yushu3

Affiliation:

1. School of Mechanical Engineering, Shandong University Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, , Jinan, Shandong 250061 , China

2. School of Mechanical Engineering, Qilu University of Technology , Jinan, Shandong 250353 , China ,

3. National Institute of Metrology , Beijing 100029 , China

Abstract

AbstractIn this work, we propose a novel bio-inspired swing decoupling mechanism supporting high precision motion systems, which is composed of multiple co-directional input branches with a rigid swing unit and an anti-rotational guiding unit. By actively adjusting the input displacements, the decoupling mechanism can switch between the swing and translational modes, where the parasitic rotations can be significantly suppressed by the anti-rotational guiding unit. With this, fully decoupled X and Y linear motions are obtained in the presence of co-directional input branches. A theoretical model of the decoupling mechanism is also established to accurately describe the decoupling behavior, which is verified by finite element simulations. A prototype of the proposed swing decoupling mechanism is fabricated and instrumented with comprehensive experimental apparatus, where the experimental results effectively validate the excellent decoupling performance and demonstrate good potentials to precision engineering applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complementary Clamp-Based Multi-Degree-of-Freedom Parallel Inchworm Actuator;2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3