Implementation and Assessment of a Residual-Based r-Adaptation Technique on Structured Meshes

Author:

Choudhary Aniruddha1,Tyson William C.2,Roy Christopher J.2

Affiliation:

1. Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

2. Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061

Abstract

In this study, an r-adaptation technique for mesh adaptation is employed for reducing the solution discretization error, which is the error introduced due to spatial and temporal discretization of the continuous governing equations in numerical simulations. In r-adaptation, mesh modification is achieved by relocating the mesh nodes from one region to another without introducing additional nodes. Truncation error (TE) or the discrete residual is the difference between the continuous and discrete form of the governing equations. Based upon the knowledge that the discrete residual acts as the source of the discretization error in the domain, this study uses discrete residual as the adaptation driver. The r-adaptation technique employed here uses structured meshes and is verified using a series of one-dimensional (1D) and two-dimensional (2D) benchmark problems for which exact solutions are readily available. These benchmark problems include 1D Burgers equation, quasi-1D nozzle flow, 2D compression/expansion turns, and 2D incompressible flow past a Karman–Trefftz airfoil. The effectiveness of the proposed technique is evident for these problems where approximately an order of magnitude reduction in discretization error (when compared with uniform mesh results) is achieved. For all problems, mesh modification is compared using different schemes from literature including an adaptive Poisson grid generator (APGG), a variational grid generator (VGG), a scheme based on a center of mass (COM) analogy, and a scheme based on deforming maps. In addition, several challenges in applying the proposed technique to real-world problems are outlined.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3