Packaging Electronics on Textiles: Identifying Fiber Junctions for Automated Placement

Author:

Challa Sushmita1,Harnett Cindy1

Affiliation:

1. University of Louisville, Louisville, KY

Abstract

Abstract Electronic textile (E-textile) research requires an understanding of the mechanical properties of fabric substrates used to build and support electronics. Because fibers are often non-uniform and fabrics are easily deformed, locating fiber junctions on the irregular surface is challenging, yet is essential for packaging electronics on textiles at the resolution of single fibers that deliver power and signals. In this paper, we demonstrate the need to identify fiber junctions in a task where microelectromechanical structures (MEMS) are integrated on fabrics. We discuss the benefits of fiber-aligned placement compared with random placement. Thereafter we compare three image processing algorithms to extract fiber junction locations from sample fabric images. The Hough line transform algorithm implemented in MATLAB derives line segments from the image to model the fibers, identifying crossings by the intersections of the line segments. The binary image analysis algorithm implemented in MATLAB searches the image for unique patterns of 1s and 0s that represent the fiber intersection. The pattern matching algorithm implemented in Vision Assistant - LabVIEW, uses a pyramid value correlation function to match a reference template to the remainder of the fabric image to identify the crossings. Of the three algorithms, the binary image analysis method had the highest accuracy, while the pattern matching algorithm was fastest.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Powering Wire-Mesh Circuits through MEMS Fiber-Grippers;2023 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS);2023-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3