Visual-Biased Observability Index for Camera-Based Robot Calibration

Author:

Shirafuji Shouhei1,Goto Hiroki2,Zhang Xiaotian2,Okuhara Keiji3,Takamura Noritaka3,Kagawa Naoya3,Baba Hiroyasu3,Ota Jun4

Affiliation:

1. Kansai University Department of Mechanical Engineering, Faculty of Engineering Science, , Osaka 564-8680 , Japan

2. The University of Tokyo Department of Precision Engineering, School of Engineering, , Tokyo 113-8656 , Japan

3. Denso Wave Incorporated FA Products Business Unit, Robot Engineering Div. 2, , Aichi 470-2297 , Japan

4. The University of Tokyo Research Into Artifacts, Center for Engineering, School of Engineering, , Tokyo 113-8656 , Japan

Abstract

Abstract Efficient robot integration can be realized by matching real and virtual robots, and accurate robot models can be generated by kinematic parameter calibration. End-effector pose selection for pose measurement to discover the positioning errors is critical in kinematic parameter calibration. Ideal pose selection maximizes calibration accuracy for a defined measurement uncertainty and optimizes measurement cost and utility. In the design of the pose selection process, observability indices are widely accepted criteria for effective pose selection to evaluate calibration performance. Observability indices represent the effect of uncertainty in the measured end-effector poses on the calibrated parameters. However, unlike expensive direct measurement using laser, low-cost camera-based kinematic calibration estimates the end-effector poses from the marker points in the captured image. The variance of the detected marker positions biases the end-effector poses and, eventually, the calibrated parameters. Therefore, this study proposes extended observability indices for pose selection based on this bias to realize accurate calibration with a low-cost camera. The target observability index is O1, a scale-free, reliable index used in kinematic calibration. Considering the visual bias, we extended it as Ov1. This study evaluated Ov1 by comparing the positioning accuracies calibrated on poses selected by maximizing it, original O1, O3 known as the best criterion to restrain the end-effector positioning uncertainty, and Ov3, which is the extended O3 for consistency. A ball-bar test showed that the poses selected by the index Ov1 exhibited higher positioning accuracy than the other indices.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3