Nonlinear vibrations of suspended cables—Part III: Random excitation and interaction with fluid flow

Author:

Ibrahim Raouf A1

Affiliation:

1. Department of Mechanical Engineering, Wayne State University, Detroit MI 48202

Abstract

This review article deals with the random excitation of nonlinear strings and suspended cables in air and fluid flow. For strings and 1D cables, the system dynamics is governed by different forms of Duffing oscillator. A brief review is devoted to the stochastic excitation of a Duffing oscillator. Under random excitation, this oscillator may or may not possess multiple solutions depending on the excitation bandwidth and level. One may be interested in estimating response statistics, first passage problem, and power spectral density. Particular attention is given to the complex response phenomena associated with increasing the spectral density level of excitation. The numerical results of the problem of nonlinear modal interaction in suspended cables will be discussed in the neighborhood of multiple internal resonance conditions. For a unimodal response, the linear theory fails to predict nonzero mean response and underestimates the mean square response under white noise excitation. Complex response phenomena such as “on-off” intermittency, energy transfer, and stochastic bifurcation are reviewed. The dynamic behavior of suspended cables in still air is different from that in flowing fluid or severe wind current due to the action of vortices, fluid normal forces, added fluid inertia force, and fluid drag force. Aeolian and galloping vibration of suspended cables in air and their dynamics in fluid flow are discussed, together with the influence of dynamic tension. In the absence of external excitation, the action of fluid forces induces vibration to the cable. The dynamics of cables subjected to steady and random fluid flow is reviewed for mooring systems. Depending on the flow speed, the cable may experience divergence or flutter similar to the case of aeroelastic structures. While the deterministic theory of strings and cables has reached an advanced stage, the reader will realize that these systems need further investigations under random excitations. There are 297 references cited in this review article.

Publisher

ASME International

Subject

Mechanical Engineering

Reference297 articles.

1. Rega G (2004), Nonlinear dynamics of suspended cables, Part I: Modeling and analysis, Appl. Mech. Rev. 57, 443–478.

2. Rega G (2004), Nonlinear dynamics of suspended cables, Part II: Deterministic phenomena, Appl. Mech. Rev. 57, 479–514.

3. Miles JW (1965), Stability of forced oscillations of a vibrating string, J. Acoust. Soc. Am. 37, 855–861.

4. Miles JW (1984a), Resonant non-planar motion of a stretched string, J. Acoust. Soc. Am. 75, 1505–1510.

5. Miles JW (1984b), Resonant motion of a spherical pendulum, Physica D 11, 309–323.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3