Affiliation:
1. Department of Mechanical Engineering, McGill University, Montreal, QU, H3A 0C3, Canada
Abstract
Abstract
We consider the problem of selecting among different physics-based computational models of varying, and oftentimes not assessed, fidelity for evaluating the objective and constraint functions in numerical design optimization. Typically, higher-fidelity models are associated with higher computational cost. Therefore, it is desirable to employ them only when necessary. We introduce a relative adequacy framework that aims at determining whether lower-fidelity models (that are typically associated with lower computational cost) can be used in certain areas of the design space as the latter is being explored during the optimization process. We implement our approach by means of a trust-region management framework that utilizes the mesh adaptive direct search derivative-free optimization algorithm. We demonstrate the link between feasibility and fidelity and the key features of the proposed approach using two design optimization examples: a cantilever flexible beam subject to high accelerations and an airfoil in transonic flow conditions.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献