Affiliation:
1. Department of Civil Engineering, Louisiana State University, Baton Rouge, LA 70893
Abstract
This paper presents a computational model for the finite element plastic damage analysis of ductile flexural plates. The phenomenological damage model proposed by Lemaitre is adopted here. The damage effect parameters of a cross-section are defined and employed to account for the damage effect across the thickness of a bending plate. Similar to the effective stresses used in many damage models, the effective stress couples are introduced in this work and used in the yield function. The damage criterion is defined in terms of damage strain energy release rates. Based on the damage node model proposed here, the elastoplastic-damage stiffness matrix of element is derived. When the corresponding elastic stiffness matrix is given explicitly, the resulting elastoplastic-damage stiffness matrix can be evaluated without use of numerical integration. The feature of the expicit form of element stiffness matrix makes the computational model proposed here very efficient. Several numerical examples of ductile plastic damage analysis of plates are also given in this work to demonstrate the validity of the computational model.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献